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Abstract. Motivated by recent experimental findings, we investigate the possible occurrence and charac-
teristics of quasicrystalline order in two-dimensional mixtures of point dipoles with two sorts of dipole
moments. Despite the fact that the dipolar interaction potential does not exhibit an intrinsic length scale
and cannot be tuned a priori to support the formation of quasicrystalline order, we find that configura-
tions with long–range quasicrystallinity yield minima in the potential energy surface of the many particle
system. These configurations emanate from an ideal or perturbed ideal decoration of a binary tiling by
steepest descent relaxation. Ground state energy calculations of alternative ordered states and parallel
tempering Monte-Carlo simulations reveal that the quasicrystalline configurations do not correspond to a
thermodynamically stable state. On the other hand, steepest descent relaxations and conventional Monte-
Carlo simulations suggest that they are rather robust against fluctuations. Local quasicrystalline order in
the disordered equilibrium states can be strong.

PACS. 61.44.Br Quasicrystals – 75.50.Kj Amorphous and quasicrystalline magnetic materials – 82.70.Dd
Colloids

1 Introduction

Since the surprising discovery of sharp diffraction im-
ages with non–crystallographic symmetry in some rapidly
quenched metal alloys by Shechtman et al. in 1984 [1],
quasicrystalline structures have attracted growing interest
as an alternative type of structure of solid matter. As a
distinctive feature, these quasicrystals possess long-range
positional order in combination with a crystallographically
‘forbidden’ (e.g. fivefold) point group symmetry, which
necessarily means aperiodic order. By now, many systems
with a quasicrystalline order have been identified in na-
ture, most of them being ternary or, in a few cases, binary
alloys (for a review see [2]). Very recently, quasicrystalline
structures with fundamental building blocks much larger
than single atoms have been found in micellar phases of
dendrimers (tree–like molecules) [3]. They represent a new
mode of organization in soft matter and are interesting in
connection with photonic bandgap materials [4] and pho-
tonic quasicrystal lasers [5].

On the theoretical side, the formation of quasicrys-
tals could be reproduced in simulations of binary mix-
tures with hard sphere or Lennard–Jones potentials [6,7].
In these simulations the quasicrystalline structures were
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stabilized by tuning the distances corresponding to the
minima of the interaction potentials to match the specific
particle–particle distances.

Recently, some evidence for local patterns with fivefold
symmetry was found in two-dimensional binary mixtures
of superparamagnetic colloidal particles [8–11]. Hence the
intriguing question arises: Can there be quasicrystalline
long-range order in a binary dipolar system despite the
fact that the dipolar interaction potential does not possess
tunable intrinsic length scales?

Here, we tackle this problem by investigating the oc-
currence of quasicrystalline order in binary mixtures of
point dipoles with varying dipole strengths. As a two-
dimensional reference structure with fivefold symmetry,
we use the prominent rhombic binary tiling and decorate
it with two types of dipoles. Then we let it relax mechan-
ically and find that for a certain range of dipolar strength
ratios D the mechanically stable configuration preserves
the long–range quasicrystalline order (see Sect. 2.3 below).
The final configuration corresponds to a local minimum
in the potential energy surface of the many-particle sys-
tem. However, its global features are still undetermined.
It could correspond to the ground state, a thermodynam-
ically stable state within a certain parameter regime (of
temperature, mixing ratio and dipolar strength ratio), or
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a metastable state that, below some freezing tempera-
ture, becomes separated from other states by free energy
barriers which are infinite in the thermodynamic limit
of infinite system size. This is reminiscent to the behav-
ior of mean–field spin–glass models [12]. In both cases,
one would expect the dipolar system to evolve in time at
some finite temperature and ultimately build up perma-
nent long-range quasicrystalline order if its initial config-
uration belongs to the attraction basin of the quasicrys-
talline state. On the other hand, the mechanically relaxed
quasicrystal structure could correspond to a metastable
state from which the system escapes when it surmounts
a finite free energy barrier. Nevertheless, within the last
scenario, it would be interesting to see, whether quasicrys-
talline ordering exists locally in the disordered equilibrium
state of the system.

To evaluate the global features as discussed in the last
paragraph, we perform a number of investigations. We
first compare in Section 3 the energy of several plausi-
ble alternative ground state structures with the energy of
the quasicrystalline state. Then, we assess in Section 4
the stability of the quasicrystalline structure, for varying
dipole strength ratio, with respect to small random per-
turbations of the particle positions in the ideal decoration.
Finally, in Section 5 we perform Monte Carlo simulations
to analyze the characteristics of quasicrystalline order at
finite temperatures. Since for the thermalization of the
system conventional Monte Carlo techniques turned out
to be ineffective, we applied a parallel tempering protocol
to reach thermodynamic equilibrium.

2 Model

2.1 System parameters and order parameter

Corresponding to the experimental situation [9,10], we
consider particles moving in a plane with their dipolar
moments all pointing in the same direction perpendicular
to the plane. In experiments this can be realized by letting
superparamagnetic particles float on a liquid meniscus in
an external magnetic field.

To investigate quasicrystalline ordering, we choose as
a reference structure the two-dimensional binary tiling,
which consists of two types of rhombuses put together
by certain matching rules [13]. It is a typical example
for a quasicrystalline pattern with fivefold symmetry (see
Fig. 1). A crystal results from a periodically repeated unit
cell decorated by atoms. Here we obtain the ideal qua-
sicrystalline reference structure by decorating the rhom-
buses as illustrated in Figure 1 and described in refer-
ence [14] so that it consists of NA strong A and NB

weak B dipoles. The mixing ratio x = NA/(NA + NB)
is τ/(2 + τ) ∼= 0.447, where τ = (1 +

√
5)/2 is the golden

mean. A picture of the final structure is shown in Figure 1.
The decoration was already used in previous simulations of
binary Lennard–Jones and hard sphere systems [6,7,14].
However, in contrast to these simulations, the potential of
the dipolar system cannot be optimized in an obvious way
to support the formation of the quasicrystalline structure.

Fig. 1. The binary tiling decorated by strong (A) and weak (B)
dipoles. The angles enclosed by the edges of its two rhombic
building blocks are all multiples of π/5, which gives rise to the
non–translation invariant 10–fold symmetry.

The interaction energy of two parallel magnetic mo-
ments m1 and m2 at a distance r is given by

Eint =
µ0

4π

m1m2

r3
, (1)

where µ0 is the vacuum permeability. In the following
we switch to dimensionless quantities. As unit length
we choose the edge a of a rhomb, i.e., the distance of
two neighboring A– and B–dipoles in the reference struc-
ture. As unit of energy (and temperature T ) we choose
the interaction energy (µ0/4π) · (mAmB/a3) of two such
dipoles. After introducing the ratio D ≡ mA/mB of dipole
strengths mA and mB, the interaction potentials of two
A–dipoles, an A– and a B–dipole, and two B–dipoles at
distance r are

EAA = Dr−3, EAB = r−3, EBB = D−1r−3. (2)

The dimensionless form clarifies that the dipole strength
ratio D is the only additional parameter in our problem
besides the temperature T and the (fixed) mixing ratio x.
This is a direct consequence of the scale–free dipolar in-
teraction potential.

In order to quantify the degree of quasicrystalline or-
der, we define the order parameter

φ =
∣
∣
∣

1
2Np

∑

j,k

θ(rmax − rj,k) exp(i · 10 αj,k)
∣
∣
∣, (3)

where θ(.) is the conventional step function (θ(x) = 1
for x > 0 and zero else), Np =

∑

j,k θ(rmax − rj,k) is
the number of pairs of dipoles with distances rj,k smaller
than rmax ≡ 1.15, and αj,k ≡ �(rj,k, ê) is the bond angle
between the pair vector rj,k and an arbitrary but fixed di-
rection ê. Since the bond–angles in the binary tiling are all
multiples of π/5 (cf. Fig. 1), φ = 1 in the ideal quasicrys-
talline structure, while φ = 0 for a system without tenfold
bond orientational order. The value rmax is slightly smaller
than the distance of the two A particles in the fat rhomb
shown in Figure 1. Eliminating these pairs from the sum
in equation (3), on the one hand, allows us to encompass
slightly displaced “nearest neighbors” but, on the other
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hand, guarantees that bond angles different from multi-
ples of π/5 are not counted in the ideal quasicrystalline
configuration.

In addition to (3), we also consider the n–fold local
bond orientational order parameters

φ̃n =
1

2N

∑

j

1
Nj

∣
∣
∣

∑

k

θ(rmax − rj,k) exp(i · n αj,k)
∣
∣
∣, (4)

where Nj =
∑

k θ(rmax − rj,k) is the number of neighbors
of dipole j. Since the absolute value is taken before aver-
aging over all N dipoles, the φ̃n are sensitive to the n–fold
symmetric arrangement of nearest neighbors around any
dipoles, but insensitive to the spatial variation of the bond
orientations. Naturally, we have φ̃10 ≥ φ.

2.2 Rational approximants

Due to the missing translational invariance, standard pe-
riodic boundary conditions cannot be imposed to ideal
quasicrystalline systems. To resolve this problem, it is con-
venient to use rational approximants of quasicrystals as
described in [15]. A rational approximant is a rectangu-
lar part of the ideal quasicrystalline structure which is
chosen such that it may be exposed to periodic bound-
ary conditions without too much distorting the local qua-
sicrystalline ordering.

From a number of different rational approximants, we
mainly used a small one with 890 dipoles (398 A, 492 B
dipoles) and size 24.80 × 29.15, and a large one with
1700 dipoles (760 A, 940 B dipoles) and size 34.27×40.29.
For both approximants, we find the order parameter φ �
0.9998 close to the ideal value φ = 1. We have no indi-
cation that the type of approximant is decisive for the
conclusions obtained below.

To speed up the computer simulations, we store the
dipolar interaction energies (and the forces) in a large ma-
trix by discretizing the set of possible distances ri,j and
use a linear interpolation scheme between the matrix en-
tries. As an advantage, the matrix has to be calculated
only once for all the simulations, and the computer mem-
ory access is usually much faster than the repeated eval-
uation of the original mathematical expressions. Details
of the method and how to take into account the periodic
boundary conditions are outlined in the Appendix.

As an example, for the two approximants described
above we use a 4044× 4754 matrix for the energies and a
2022× 2377 matrix for the forces. We find the underlying
discretization of space for the energies or forces on a length
scale of order 10−2–10−3 to have no noticeable influence
on our results.

2.3 Mechanical equilibrium

When considering the ideal quasicrystalline structure as a
potential (meta–)stable state, the first question one should
ask is whether this structure can be mechanically stable,
i.e., whether the net forces on all the dipoles balance out

or, in other words, whether the structure is a local or
global minimum of the systems’ potential energy [16]. In
simple periodic lattices (see Sect. 3) the vanishing net force
on the dipoles and hence the equilibration of the system
is immediately obvious from the symmetry of the dipolar
pattern against inversion. By contrast, this symmetry is
missing in the quasicrystalline structure and the question
of mechanical equilibrium becomes non-trivial.

Note that in an infinite quasicrystal two different po-
sitions are never exactly equivalent. So the calculation of
the long–range interaction with its surrounding dipoles
can, strictly speaking, not be based on a finite piece of
the ideal structure. Practically, however, as the dipolar
interactions (1) or (2) decay as r−3 with the distance r,
the potential felt by the dipoles will largely be dominated
by their local surroundings (see also next section). In this
context, it is interesting to note that in the infinite bi-
nary tiling any arbitrarily large piece of it repeats (up to
rotations) within a distance of the order of its size (see
e.g. [17]).

In the ideal structure, the net forces acting on a
dipole converge to a relative precision of 10−6 when tak-
ing into account neighboring particles up to a distance of
rmax � 25. The resulting force components clearly show
that there is no dipole strength ratio D which would make
the ideal structure a minimum of the potential energy sur-
face. On the other hand, when we let the ideal quasicrys-
talline structure relax via the method of steepest descent
into a local potential minimum, we find that in the range
4 � D � 6.5 the positions of the dipoles are only very
slightly shifted (see Sect. 4). Based on the steepest de-
scent algorithm, however, we cannot state simple system-
atic rules for the decoration of the binary tiling such that
the dipoles assume an exact mechanical equilibrium. Due
to this fact and since the energy per dipole of the re-
laxed configurations and the ideal quasicrystal are almost
the same, we retain the decoration of the binary tiling as
model reference structure.

3 Ground state calculations

Considering the quasicrystalline structure as a potential
equilibrium state, we next investigate how this structure
compares energetically to plausible alternative ordered
states. To this end, we examine the energy per dipole in a
binary dipolar system with the mixing ratio x = τ/(2+τ)
and the total number density of dipoles ρ � 1.231, which
are the values of the ideal quasicrystalline structure [18].
The dipole strength ratio D then remains as the only free
parameter.

To determine the energy per dipole E� in the ideal qua-
sicrystalline structure, we calculate the average energy of
about 104 dipoles within a maximum distance rmax = 300
and extrapolate for rmax → ∞ [19]. In view of the discus-
sion in the previous section, we should mention that the
value of E� may be up to a few parts per thousand higher
than the energy per dipole in the slightly ‘relaxed’ qua-
sicrystal. Note that the conclusion from this section will
not alter due to such differences.
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Fig. 2. Alternative ordered structures and their energies per
particle (Ei) compared to that of the quasicrystalline struc-
ture (E�). Plotted is the fraction Ei/E� as a function of the
ratio of dipole moments D.

The irrational mixing ratio x requires alternative or-
dered structures based on regular lattices to be phase–
separated, i.e., to be a combination of two distinct lattices,
one with a higher mixing ratio than in the quasicrystal and
another one with a lower mixing ratio. In the thermody-
namic limit, we can neglect energy contributions from the
interfacial boundaries between the two phases and opti-
mize their respective lattice constants (or their ‘volume
fractions’) to minimize the total energy per particle Ei of
the two-phase state.

Some plausible alternative structures are depicted in
Figure 2: (i) two hexagonal lattices (phase separation of A
and B dipoles), (ii) a hexagonal A lattice with B dipoles
in the triangle centers and a hexagonal A lattice, (iii) a
hexagonal A lattice with B dipoles in every second tri-
angle center and a hexagonal B lattice, (iv) a centered
square lattice of A and B dipoles and a hexagonal lat-
tice of B dipoles, and (v) a centered square lattice of A
and B dipoles together with the centered A–B hexago-
nal lattice of (ii). The corresponding values Ei for dipole
strength ratios 1 ≤ D ≤ 10 are shown in the graph in
Figure 2 relative to the value E� of the quasicrystalline
structure.

The figure shows the preference of hexagonal order
and the degeneracy of structures (i) and (ii) for D = 1,
i.e., identical A and B dipoles. Furthermore, hexagonal
ordering is preferred for D � 3, whereas for larger D,
partial tetragonal ordering seems energetically favorable.
The quasicrystalline structure is closest to the optimum
structure in the range 4 � D � 6, with an optimum
around D � 4.5. However, the phase–separated struc-
ture (v) clearly has lower energy. Accordingly, the qua-
sicrystalline structure cannot be the ground state of the
dipolar mixture.

Still, we find that from a purely energetic point of view
the quasicrystalline structure is a surprisingly competitive
type of ordering for a binary mixture of dipoles within the
appropriate mixing ratio and dipole strength ratio. In view

of the fact that the alternative ordered structures (i)–(v)
require a phase boundary, which possesses a surface en-
ergy, the quasicrystal may become the preferred structure
in finite systems. Interestingly, the quasicrystal becomes
more favorable when the interaction potential Eint ∼ r−3

is modified to a fictitious Ẽint ∼ r−α with α close to
2 (α > 2 for reasons of convergence) [20]. Albeit we are
not aware of any realization of such a potential in nature,
this indicates that other types of scale-free interactions
more strongly support the quasicrystalline ordering.

4 Stability analysis of reference structures

4.1 Steepest descent calculations

In this section, we test the dynamical stability of the qua-
sicrystalline structure using the method of steepest de-
scent. We displace the dipoles in small steps along their
potential gradient with the step length being proportional
to the modulus of the gradient vector. In numerics, this
algorithm is used to find minima of multi–parametric func-
tions [21]. In physical terms, it describes the overdamped
motion of the particles at zero temperature, which may
be considered the simplest type of dynamics to be imple-
mented in a system. The method has been applied before
to Lennard–Jones quasicrystals [22].

In our simulations, the maximum step length (for the
dipole experiencing the largest force) is limited to a fixed
value of order 0.01–0.001. Typically, after 103–104 steps,
the relaxation is finished when the dipoles start to oscil-
late about fixed positions, where the amplitudes are of
the order of the maximum step length. We perform two
types of steepest descent calculations for varying dipole
strength ratio D. In the first one, we start from the ideal
quasicrystalline positions of the dipoles, and in the second
one, we perturb the ideal positions by Gaussian random
noise of different strength.

The results of these simulations are somewhat hard to
quantify since their concrete numerical outcome depends
on the details of the algorithmic implementation, e.g., the
value of the step length. The long–range dipolar poten-
tial and the lack of simple translational symmetry (which
would let forces balance out trivially) give rise to a large
number of dipole configurations being – mostly shallow
– local energetic minima. Which of the different minima
will be reached in a steepest descent calculation depends
on computational details and initial conditions. Nonethe-
less, robust trends in the relaxation behavior are revealed
and we obtain a reliable picture of the systems’ dynamical
stability.

4.2 Stability as a function of dipole strength ratio D

Figure 3 shows the order parameter φ as a function of
the dipole strength ratio D as obtained after steepest de-
scent calculations starting from the ideal quasicrystalline
structure. The data indicate that the ‘relaxed’ config-
urations stay closest to the ideal structure in a range
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Fig. 3. Order parameter φ after steepest descent calculations
starting from the ideal quasicrystalline structure as a function
of the dipole strength ratio D for three different approximants.
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Fig. 4. Average order parameter φ after steepest descent calcu-
lations starting from a perturbed structure for different values
of D. φ is plotted as a function of the standard deviation σ
of the initial Gaussian displacements. As indicated, two curves
(full circles) correspond to a medium-sized (1700 dipoles) and
a large (2330 dipoles) approximant, as opposed to 890 dipoles
(cf. Fig. 3). For comparison, the order parameter φ due to pure
Gaussian noise is shown, i.e., before the steepest descent relax-
ation starts.

4.5 ≤ D ≤ 5.5 with an optimum around D � 4.8. The op-
timum range of D essentially coincides with the range de-
duced from the comparison with alternative ordered struc-
tures in Section 3.

This result is reproducible for different values of the
step length and for different approximants (see Fig. 3),
though the values of the relaxed order parameters φ may
differ. This difference is not particularly significant, since
the magnitude of φ is very sensitive even to small dis-
placements of the dipoles. For example, we find φ � 0.8 if
the dipole coordinates are randomly altered with respect
to their values in the ideal quasicrystalline structure by
a Gaussian noise with standard deviation σ = 0.02 (cf.
Fig. 4). Therefore, it is reasonable to consider the ‘relaxed’

structures to represent the ideal quasicrystalline configu-
ration.

The reason why the medium approximant has a
smaller value of the order parameter is likely due to the
fact that it corresponds to an approximation of τ ∼= 1.618
by the rational value τ̃ = 7/4 = 1.75, which is worse than
the approximations τ̃ = 5/3 = 1.6̄ and τ̃ = 8/5 = 1.6 by
the small and large approximants, respectively [15]. The
medium approximant therefore has the lowest quality with
respect to representing the ideal quasicrystalline configu-
ration. The results for the small and large approximant
suggest that finite size effects are not relevant here.

4.3 Recovery from perturbations

Next, we test for metastability of the structure and ask
if the quasicrystalline order recovers from small perturba-
tions. Therefore, we apply Gaussian noise with zero mean
and standard deviation σ to each particle coordinate be-
fore letting them relax via steepest descent. The average
order parameter φ of the final configurations is plotted in
Figure 4 as a function of σ for a few values of D from the
optimum range.

Up to an average initial displacement σ � 0.15, the sys-
tem relaxes back to the quasicrystalline structure, whereas
for larger σ, numerous defects remain as reflected by the
decreasing average order parameter φ. This behavior is
reminiscent of a modified Lindemann-like criterion, which
predicts the melting of a 2D dipole crystal at an average
relative displacement of 0.12 in units of the lattice con-
stant [23]. We note also that due to the initial Gaussian
noise the order parameter decreases below 0.1 at σ = 0.15
from which it recovers its optimum value around 0.9. This
means that the quasicrystalline state is relatively robust
against random perturbations.

Note that the order parameter φ in Figure 4 shows an
equivalent behavior with respect to the different approx-
imants as already discussed in connection with Figure 3.
To conclude, Figures 3 and 4 suggest that the stability of
the quasicrystalline binary tiling is an intrinsic property
of the ordered structure rather than a finite size effect.

5 Behavior at finite temperatures

5.1 Monte Carlo simulations

To assess the behavior of the binary system at finite tem-
peratures we choose Monte Carlo (MC) simulations [24].
While computationally less costly than e.g. Langevin dy-
namics or even more detailed schemes, the dynamical
MC simulations allow us to explore thermodynamical
equilibrium states and, with a reasonable choice of jump
trials, should also yield a realistic scenario of the systems’
evolution.

As a jump trial in our simulations, a particle is chosen
at random and imposed a Gaussian distributed displace-
ment. The trial is accepted according to the Metropolis
rule. The standard deviation of the Gaussian in the range
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D = 5 in an approximant of 760 dipoles. For each T , ‘run 1’
started from the ideal quasicrystalline structure, while the ini-
tial configuration of ‘run 2’ was perturbed by Gaussian noise
with σ = 0.1 (cf. Sect. 4).

0.001–0.1 is adjusted dynamically to ensure an efficient ac-
ceptance rate of trials in the range 10–60%. One MC step
corresponds to one attempted move per particle.

For sufficiently low temperatures, the outcome of these
standard MC simulations goes well together with the re-
sults from the steepest descent simulations. For example,
starting from the ideal or slightly perturbed quasicrys-
talline structure at T = 0.005, we find the order parame-
ter first to decay and then to fluctuate around φ � 0.75,
which confirms that (nearly) quasicrystalline order repre-
sents a local minimum in the free energy.

However, especially at slightly higher T , the degree
and speed of the order parameter relaxation vary strongly
from run to run in the MC simulations. In Figure 5, exam-
ple trajectories of φ are shown for T = 0.01 and 0.04. The
quasicrystalline structure is relatively stable at T = 0.01,
but the attained value of φ depends erratically on the
initial conditions of the simulation. For example, in Fig-
ure 5 the order parameter emerging from an initially per-
turbed structure (run 2) unexpectedly exceeds the order
parameter emerging from the ideal quasicrystalline struc-
ture (run 1). Moreover, at T = 0.04 a slow and unpre-
dictable decay of φ becomes observable on the time scale
reached in the simulation. Even after excessively long runs
of more than 106 MC steps, it remains unclear whether the
system has reached an equilibrated state.

5.2 Parallel tempering

To accelerate thermalization in the simulations, there are
different possibilities. One of them is to introduce ‘artifi-
cial’ multi particle flips as additional MC moves, as was
previously done for the Lennard–Jones system in [6]. In
an extra series of our simulations, we tested an elementary
version of such flips, whereby every 100 MC steps the po-

sitions of an A and a B dipole are interchanged and the
new configuration is evolved for several MC steps before
the whole move is either accepted or rejected. In general,
we find the relaxation of φ to be faster, but the overall
behavior remains unaltered.

For the main part of our simulations, we use the stan-
dard local moves of single particles, which might be closer
to the dynamics of the experimental systems, but we apply
a more sophisticated thermalization scheme known as par-
allel tempering [25,26]. Basically, the idea of the method
is to circumvent trapping of a systems’ dynamics in lo-
cal energetic minima at low temperatures by occasion-
ally interchanging the configuration with the one of the
same system simulated in parallel at higher temperatures.
Here, we consider 26 copies of our system at tempera-
tures 2.5 × 10−4 = T1 > T2 > . . . > T26 = 0.071. Ev-
ery 2000 MC steps, the particle configurations at adjacent
temperatures Ti, Ti+1 are interchanged with a Metropolis
type rate,

wi,i+1 =







exp
[(

1
Ti

− 1
Ti+1

)

(Ei+1 − Ei)
]

if Ei+1 > Ei

1 else,
(5)

where Ei and Ei+1 are the energies of the configurations.
It can be shown that this scheme allows different config-
urations to occur with their correct Boltzmann weight at
any of the temperatures Ti.

In our implementation of the algorithm, a control pro-
gram on a single PC keeps track of the configurations
simulated at the various temperatures Ti. Once the as-
signment of a certain configuration to a Ti has been made
for the next 2000 MC steps, it is passed as independent
computing job to our queuing system. So the simulations
can be carried out on a variable number of available CPUs
which may also differ in speed. One MC step for a single
configuration takes about 0.5 s on a contemporary Intel
Pentium IV 2.8GHz CPU.

We find the parallel tempering algorithm to be highly
effective in thermalizing our ensemble of 26 systems. This
relatively large number allows us to keep the spacing be-
tween the Ti small and thus to change configurations fre-
quently while still covering a large range of temperatures
from possible ordering to apparently fluid–like behavior.
After typically 300 rounds (i.e. 300 × 2000 MC steps),
we see no qualitative differences any more between the
extremes of an ensemble started from the ideal quasicrys-
talline structure and one started from random initial po-
sitions.

5.3 Results: local ordering

Figure 6 shows the mean order parameters φ and φ̃n for
several n as a function of temperature T . The values are
obtained from particle configurations at the respective Ti,
each taken at the end of the 2000 MC step cycles of the
parallel tempering scheme. The simulations are carried
out at a dipole strength ratio D = 4.75 and started from
random initial positions. The behavior is very similar for
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Fig. 6. Order parameters φ and φ̃n for several n as a func-
tion of temperature T as obtained from the parallel tempering
MC simulations. The dipole strength ratio is D = 4.75. Note
the jump in the ordinate.

A−particles
B−particles

Fig. 7. Configuration from the parallel tempering MC sim-
ulations for D = 4.75. The temperature is T = 0.00134, the
order parameter φ � 0.07 and energy per particle E � 8.087.
The part of the system shown is at the same scale as in Fig-
ure 1. The lines highlight local quasicrystalline ordering and are
drawn whenever the bond angles between nearest neighbors of
A (B) particles are even (odd) multiples of 2π/10 (within an
error of 10%).

D = 4.5 and 5. Apart from larger initial fluctuations of
the order parameters φ and φ̃10, the same holds for simu-
lations started from ordered initial positions.

In Figure 7, part of an example configuration from the
lower temperature range in the parallel-tempering ensem-
ble is shown. In this representative example, no long-range
quasicrystalline ordering is discernable. This finding is fur-
ther supported by Figure 6. The order parameter φ stays
very small throughout the whole temperature range and
there is no signature of a phase transition.

We find that the mean potential energy per particle
in the final configurations approximately fulfills E(T ) �
8.083+T at low T , where the simple dependence on T can
be understood from a harmonic approximation around the
configurations with lowest energy. Thus, at low tempera-
tures, typical configurational energies are below both the
energy of the ideal quasicrystalline structure (E� � 8.103
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Fig. 8. Bond–order correlation function gn(r) for n = 5 (tri-
angles) and n = 10 (squares). The average is over 100 configu-
rations at a temperature T = 0.00134 as in Figure 7. The open
and full symbols distinguish the initial configurations in the
MC simulations; ideal quasicrystal (open symbols) and ran-
dom positions of the dipoles (full symbols).

for D = 4.75) and the one reached in the steepest de-
scent calculations, cf. Section 4. On the other hand, E is
still above the energy of the optimum phase separated
structure (E(v) � 8.078) found in the ground state energy
calculations in Section 3. This is not surprising, since the
necessity of a phase boundary might prevent the dipolar
mixture from reaching its possible ground state as deduced
for infinite system size.

Based on these results, we can exclude the sponta-
neous occurrence of long–range quasicrystalline order in a
thermodynamically stable phase. Moreover, irrespective of
the (nearly) quasicrystalline structure being stable against
small mechanical perturbations, we think that it may not
represent a thermodynamically metastable state. Such a
state would become separated from other states by an in-
finite free energy barrier in the limit of infinite system
size.

In accordance with experimental observations [9,10],
we find, however, that, while the overall structure is amor-
phous, there occur small domains with particles arranged
as in the quasicrystal, see Figure 7. As can be seen from
the value of φ̃5 and φ̃10 compared to φ̃n with n = 4, 8
and 6, 12 in Figure 6, there is a tendency towards a pre-
ferred local 5– or 10–fold symmetry at lower tempera-
tures. To support these statements further, we introduce
the bond-order correlation function

gn(|r − r′|) = |〈ein[α(r)−α(r′)]〉|, (6)

where the angle α(r) gives the orientation of a bond be-
tween two dipoles at location r and 〈. . .〉 means both an
average over all pairs of bonds at a distance r = |r − r′|
and over different configurations taken from the MC simu-
lations. In Figure 8, we plot gn(r) for n = 5 (triangles) and
n = 10 (squares). The open and full symbols belong, re-
spectively, to an ideal quasicrystal or to random positions
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of the dipoles as the initial configurations in MC simula-
tions. Clearly the equilibrium bond-order correlation func-
tion does not depend on the initial condition apart from
deviations for small distances r due to statistical errors.
The graphs also clearly indicate that the quasicrystalline
order is restricted to small domains, as noted above.

6 Conclusions

Our results from the parallel tempering method provide
ample evidence that the quasicrystalline binary tiling with
two sorts of dipoles does not correspond to a thermody-
namical equilibrium state. Nevertheless, we can identify
a range for the dipole strength ratio where a long–range
quasicrystalline structure corresponds to a local minimum
in the potential energy landscape of the system. This local
minimum has an attraction basin covering Gaussian fluc-
tuations of the particle positions up to 15% of the distance
of two neighboring A– and B–dipoles in the ideal reference
structure. Our simulations, however, do not indicate that
the barriers separating the local minimum from other min-
ima increase with the system size. Therefore we do not ex-
pect that such a frozen state with quasicrystalline order
exists although we cannot strictly exclude this possibil-
ity [27].

In any case, at low temperatures the times for the sys-
tem to escape the local minimum by surmounting free
energy barriers can become rather long. This is clearly
seen in the kinetics modeled by conventional Monte Carlo
simulations. Hence structures with long–range quasicrys-
talline order can be kinetically stable over sufficiently long
time to make them an interesting subject for further study
and eventual applications. What “sufficiently long” in this
context means could be tested in experiments. Todays
optical tweezer techniques allow colloidal particles to be
placed at defined positions. Accordingly, one could pre-
pare a quasicrystalline pattern and monitor its stability.
Moreover, special boundary conditions and external stim-
uli may support the formation of quasicrystalline struc-
tures. We also found that a modified scale–free interac-
tion potential ∝r−(2+ε) leads, for ε > 0 becoming small,
to ground state energies of the quasicrystal that within nu-
merical error bars cannot be distinguished from the most
favorable phase–separated lattice structures investigated
in Section 3.

In agreement with experiments we find that even in
the disordered ground state of the binary dipole sys-
tem, local bond orientational order with quasicrystalline
5– and 10–fold symmetry is preferred. We made quan-
titative predictions for the temperature behavior of sev-
eral local bond-orientation order parameters, which can
be tested in experiments by using, for example, two-
dimensional binary mixtures of superparamagnetic col-
loidal particles [8,10,11].

We gratefully acknowledge fruitful discussions with H. König
and G. Maret. We thank the Deutsche Forschungsgemeinschaft

for financial support through the Sonderforschungsbereich 513
and under Grant No. Sta352/5-2.

Appendix: Energy and force calculations
in the simulations

A.1 General procedure

For an efficient calculation of the energy E(x, y) of (or
force F(x, y) = −∇E(x, y) acting on) a pair of dipoles i, j
with distance vector ri,j = (x, y), including their images
in the periodically continued systems of the simulation
box, we store the corresponding values on a fine grid of
pair vectors and use a linear interpolation to obtain the
values for ri,j in the continuum. According to the “min-
imum image convention”, possible distances in x– and
y– direction fall in the range −Lx/2 ≤ x < Lx/2 and
−Ly/2 ≤ y < Ly/2, where Lx and Ly are the lengths
of the system in the x– and y–direction. We define by
γ ≡ Lx/Ly the aspect ratio. Due to symmetry, E(x, y) is
an even function of x and y, while the force components
Fx(x, y) = −∂xE(x, y), Fy(x, y) = −∂yE(x, y) are odd
functions of x, y, and even functions of y, x, respectively.
These symmetries are used to reduce the storage needs for
the matrices of energy values and force components on the
grid.

For short notation, we use in this appendix Ly = 1
as our length unit and µ0mimj/4πL3

y as our energy unit,
where mi and mj are the magnetic moments of the two
dipoles with pair vector ri,j (transformation to the units
used in the main text follows after elementary rescaling).
Then we have

E(x, y) =
∞∑

µ,ν=−∞

1
[

(x + γµ)2 + (y + ν)2
]3/2

. (A.1)

The numerical calculation of this absolutely convergent
series can be done by different means, for example by em-
ploying a two–dimensional variant of the Ewald summa-
tion [24] or a simple extrapolation scheme, cf. [19]. We
applied a method developed previously in our group [28],
where the series in (A.1) is decomposed into an inner part
for distances

√

(x + γµ)2 + (y + ν)2 smaller than a cutoff
radius rm, and a remaining outer part, E = Ein + Eout.
The inner part Ein is calculated by explicitly performing
the summation, while the outer part Eout is approximated
by an integral. An analogous decomposition is done for
the force components. In the following we discuss the inte-
gral approximation for the outer parts and their numerical
evaluation.

A.2 Integral approximation for the energy

Defining for α = 0, 1

να(µ) =

{
ceil

√

r2
m − γ2µ2 if γ|µ| < rm

α else,
(A.2)
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where ceil(x) is the lowest integer number larger than or
equal to x, we obtain

Eout =
∞∑

µ=−∞





−ν0(µ)
∑

ν=−∞
[. . . ]−3/2 +

∞∑

ν=ν1(µ)

[. . . ]−3/2





(A.3)

�
∫ ∞

−∞
dµ

[
∫ −ν0(µ)

−∞
dν [. . . ]−3/2

+
∫ ∞

ν1(µ)

dν [. . . ]−3/2 +
1
2

( [

(x + γµ)2

+(y − ν0(µ))2
]−3/2

+
[

(x + γµ)2

+(y + ν1(µ))2
]−3/2

)
]

(A.4)

≡
∫ ∞

−∞
dµ f(µ; x, y). (A.5)

Here [. . . ] stands for
[

(x + γµ)2 + (y + ν)2
]

. The two
integrals over ν together yield

∫

dν . . . =
1

(x + γµ)2

(

2 − ν0(µ) − y
√

(x + γµ)2 + (y − ν0(µ))2

− ν1(µ) + y
√

(x + γµ)2 + (y + ν1(µ))2

)

. (A.6)

Due to the piecewise definition of να(µ), it is useful to
split the remaining integral over µ in (A.5) according to
its boundaries, with

∫ ∞

−∞
dµ f(µ; x, y) =

∫

|µ|≤rm/γ

dµ f(µ; x, y)

+
∫

|µ|≥rm/γ

dµ f(µ; x, y) ≡ Eout,1 + Eout,2. (A.7)

The first part Eout,1 is calculated analytically. With the
abbreviations

a± ≡
√

1 +
(

y

rm ± x

)2

, b± ≡
√

1 +
(

y + 1
rm ± x

)2

,

(A.8)
it reads

Eout,1 =
1
γ

[

2 rm

r2
m − x2

− 2 − a− − a+

y
+

2 − b− − b+

y + 1

+
2 − 1

a−
− 1

a+

2y2
+

2 − 1
b−

− 1
b+

2(y + 1)2

]

. (A.9)

If y = 0, the limit y → 0 should be taken explicitly to
avoid numerical instabilities,

lim
y→0

Eout,1 =
1
γ

[

2
(

1
rm − x

+
1

rm + x

)

+ (2 − b− − b+)

+
1
4

(
1

(rm − x)2
+

1
(rm + x)2

)

+
(

1 − 1
2b−

− 1
2b+

)]

.

(A.10)

The second part Eout,2 is approximated by a sum,

Eout,2 �
µ1−1
∑

µ=−µ1+1

f(µ; x, y)

+
(

1
2
− ε

)

[f(−µ1; x, y) + f(µ1; x, y)] , (A.11)

where µ1 ≡ ceil(rm/γ) and ε ≡ µ1 − rm/γ. For numerical
stability, here the limit x → 0 of the addend with µ = 0
should be considered explicitly,

lim
x→0

f(0; x, y) =
1
2
[

(rm − y)−3 + (rm + y)−3

+(rm − y)−2 + (rm + y)−2
]

. (A.12)

In the numerics, the evaluation of (A.11) can conve-
niently be combined with the summation for the inner
part Ein. For the energy matrix (and for the force calcu-
lation discussed in the next section), we use rm = 10. If
E is to be calculated repeatedly in a simulation, rm � 5
might be a reasonable choice. In ample tests in the range
0.8 ≤ γ ≤ 1.2, we find the relative error of the integral
approximation of the energy not to exceed 8 × 10−4 for
rm = 5 and 10−4 for rm = 10.

A.3 Integral approximation for the force

The outer part F out
x of the x component force is

F out
x =

∫ ∞

−∞
dµ

[

1
x + γµ

(

y − ν0(µ)

[(x + γµ)2 + (y − ν0(µ))2]3/2

− y + ν1(µ)

[(x + γµ)2 + (y + ν1(µ))2]3/2

)

+
2

(x + γµ)3

(

y − ν0(µ)

[(x + γµ)2 + (y − ν0(µ))2]1/2

− y + ν1(µ)

[(x + γµ)2 + (y + ν1(µ))2]1/2

)

+
3(x + γµ)

2

(

1

[(x + γµ)2 + (y − ν0(µ))2]5/2

+
1

[(x + γµ)2 + (y + ν1(µ))2]5/2

)]

(A.13)

≡
∫ ∞

−∞
dµ g(µ; x, y). (A.14)
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Analogous to (A.7), the integral over µ is split into two
parts, of which the first one yields

F out,1
x =

1
γ

{

1
y

[
1

|rm − x|
(

1
a−

− a−

)

− 1
|rm + x|

(
1

a+
− a+

)]

− 1
y + 1

[
1

|rm − x|
(

1
b−

− b−

)

− 1
|rm + x|

(
1
b+

− b+

)]

− 1
2|rm − x|3

(
1

a3−
+

1
b3−

)

+
1

2|rm + x|3
(

1
a3
+

+
1
b3
+

)

+ 2
(

1
(rm + x)2

− 1
(rm − x)2

)}

, (A.15)

while the second part is approximated by a sum analogous
to (A.11),

F out,2
x �

µ1−1
∑

µ=−µ1+1

g(µ; x, y)

+
(

1
2
− ε

)

[g(−µ1; x, y) + g(µ1; x, y)] . (A.16)

Since the approximation turns out to be inaccurate
in the neighborhood of x = 0 and x = 0.5γ, it is ad-
vantageous to perform the force calculation in the ranges
|x|/γ � 5 × 10−4 and 0.5 − |x|/γ � 10−2 by explicit sum-
mation.

The corresponding expressions for the force component
F out

y can be obtained from the expressions for F out
x by

interchanging x and y, replacing γ by 1/γ, and rescaling
by 1/γ4, i.e. F out

y (x, y; γ) = 1/γ4 F out
x (y/γ, x/γ; 1/γ).
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